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IMPROVED LOWER BOUNDS FOR THE DISCREPANCY 
OF INVERSIVE CONGRUENTIAL PSEUDORANDOM NUMBERS 

JURGEN EICHENAUER-HERRMANN 

ABSTRACT. The inversive congruential method with prime modulus for generat- 
ing uniform pseudorandom numbers is studied. Lower bounds for the discrep- 
ancy of k-tuples of successive pseudorandom numbers are established, which 
improve earlier results of Niederreiter. Moreover, the present proof is substan- 
tially simpler than the earlier one. 

1. INTRODUCTION AND MAIN RESULTS 

A particularly promising approach of generating uniform pseudorandom 
numbers in the interval [0, 1) is the inversive congruential method with prime 
modulus. A review of several nonlinear congruential methods is given in the 
survey articles [1, 5, 6] and in H. Niederreiter's excellent monograph [7]. 

Let p > 5 be a prime, and identify Zp = {0, 1, . .. , p - 1} with the finite 
field of order p. For z E Zp := Zp\{O} let z denote the multiplicative in- 
verse of z modulo p, and put 0 := 0. For integers a, c E Zp an inversive 
congruential sequence (Yn)n>O of elements of Zp is defined by 

Yn+i - ac2y-n + c (modp), n > O. 
A sequence (xn)n>o of inversive congruential pseudorandom numbers in the 
interval [0, 1) is obtained by xn = Yn/P for n > 0. Observe that these 
sequences are always purely periodic. In [2], sequences having maximal period 
length p are characterized. In particular, it follows from [2, Theorem 2] that 
this property depends only on a E Zp, but not on the specific value of c E 
Zp. Let Mp be the set of all a E Zp which belong to inversive congruential 
sequences with maximal period length p. 

For assessing statistical independence properties the discrepancy of the k- 
tuples 

xn = (xn,xn+l, ..., xn+k-1) E [O, 1)k O < n <p, 
of successive inversive congruential pseudorandom numbers can be used, which 
is defined by 

D(k) = sup IFp (J) - V(J)i, 
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where the supremum is extended over all subintervals J of [O, 1)k, F (J) is 
p times the number of points among xo, xl, ... , xp- falling into J, and 
V(J) denotes the k-dimensional volume of J. The following two theorems 
from [4] provide lower bounds for D(k) . Let fq be Euler's totient function and 
co(m) be the number of different prime factors of a positive integer m. Let 

t(p) = (1 - 
(p 1/2 + 2)20(P-1)) 1/2 

and 
A (t) _ (1 

- 

t2)p _ 
(p112 + 

2)2w(P-1) (4-t2)p+4pl/2+ I 

for 0 < t < t(p). Note that [2, Corollary 1] implies that an inversive congru- 
ential sequence has maximal period length p if z2 _ cz - ac2 is a primitive 
polynomial over Zp. 
Theorem 1. There are at least ~o (p + 1) primitive polynomials z2 - cz - ac2 over 
Zp such that the discrepancy D,p,k) for the corresponding inversive congruential 
generator satisfies 

D(k) > 1 -1/2 _ 2p-315) J-P 2(7r + 2) 
for all dimensions k > 2. 

Theorem 2. Let 0 < t < t(p). Then there are more than Ap(t)9q(p2 - 1)/2 
primitive polynomials z2 - cz - ac2 over Zp such that the discrepancy D1k) for 
the corresponding inversive congruential generator satisfies 

Dn(k) > t -1/2 

for all dimensions k > 2. 

In the present paper the following improved lower bounds for Dpk) are es- 
tablished. These results have two main advantages. They apply to all inversive 
congruential sequences with maximal period length p and not only to those 
belonging to a primitive polynomial, and they provide information on the sub- 
classes of inversive congruential generators which correspond to the different 
values of a E Mp . Moreover, the proof of these results, which is given in the 
third section, is much simpler than the one of Theorems 1 and 2 in [4]. Let 

p( 3 (p 1/2 

and 
(1-t2)p-2p(p-1_) 

(4-t2)p+4pl/2+1 

for O<t<i(p). 

Result 1. Let a E Mp. Then there exists a c E Zp such that the discrepancy 
Dpk) for the corresponding inversive congruential generator satisfies 

for de2(7r 2)k 

for all dimensions k > 2. 
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Result 2. Let 0 < t < t(p) and a e Mp . Then there are more than Ap(t)(p - 1) 
values of c E Zp such that the discrepancy Dk(k) for the corresponding inversive 
congruential generator satisfies 

D(k) > t -1/2 
p 2(7r +2) 

for all dimensions k > 2. 

2. AUXILIARY RESULTS 

First, some further notation is necessary. Let e(t) = e27lit for t E R and 
X(z) = e(z/p) for z E Z. For fixed a E Zp and c E Zp, an exponential sum 
is defined by 

S(c) = Z x(c(y + ay)). 
yEZp 

Lemma 1. Let a E Zp*. Then 

Z IS(c)12 > p(p - 3). 
cEEZ* 

Proof. Easy calculations show that 

Z IS(C)12 = Z Z x(c(y - z + a(y- -z))) 
cEZp cEZp y, zEZp 

= Z , X(c(y - z + a(j7 - ))) 
y, zEZp cEZp 

=p #{(y, z) E Zp x Zply - z + a(y--z)- 0(modp)} 

> p(#{(y, z) E Zp x Zpl(Y - z)(1 - ajTy) 0 (modp)} + 1) 
= p(#{(y, z) E Zp x ZPly = z or y _ az (modp)} + 1) 
> p(2p - 3), 

where the last inequality follows from the fact that there are at most two values 
of z E Zp with z az (modp) . Since S(O) = p, one obtains at once 

IS(C)12 > p(2p - 3) _ p2 =p(p - 3). 
cEZP 

Lemma 2. Let 0 < t < t(p) and a e Zp . Then there are more than Ap (t)(p - 1) 
values of c E Zp such that 

IS(C)l > tp112. 

Proof. The lemma is proved by contradiction. Suppose that IS(c)l > tpU/2 
for at most Ap(t)(p - 1) values of c e Zp. Then IS(c)l < tpU12 for at least 
(1 - Aip(t))(p - 1) values of c E Zp . Now, observe that S(c) = K(x; c, ac) + 
1, where K(X;., *) denotes the Kloosterman sum defined in [3, Definition 
5.42]. Hence, it follows from the classical bound for Kloosterman sums (cf. [3, 
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Theorem 5.45]) that IS(c)I < 2pU/2 + 1 for all c E Zp. Therefore, one obtains 

I S(c)12 < (1 _-Ap(t))(p )t2p + Ap(t)(p l)(2p 1/2 + 1)2 
cEZp 

=p(p - 3), 

which is a contradiction to Lemma 1. 5 

3. PROOF OF THE RESULTS 

First, Lemma 1 in [4] is applied with N = p, t, = x, for 0 < n < p, 
h = (1, 1,O , . . ., O) E Zk, and hence m = 2. This yields 

-) 2(~r +~2) L e(xn + Xn+I) 

1- 
2(7r + 2)p Z, X (Yn + ac2yn) 

Since (Yn)n>O has maximal period length p, i.e., {Yo, Yi, ., Yp-l} = Zp, 
one obtains 

(k)1> 
Z 

(z+ac2z) P 2 (7r +2)p+ 

Now, the transformation z _ cy (modp) yields 

D(k) > I2( 2) X(cy + ay)) = 2 IS(C) I 

Therefore, Result 2 follows at once from Lemma 2. Finally, Result 1 is obtained 
from Result 2 with t = t(p). 
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